天线的分类
在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。
按工作性质可分为发射天线和接收天线。
按用途可分为通信天线、广播天线、电视天线、雷达天线等。
按方向性可分为全向天线和定向天线等。
按工作波长可分为超长波天线、长波天线、中波天线、短波天线、超短波天线、微波天线等。
天线辐射特性测量法分类
天线辐射特性测量方法。远场法可分为室外场、室内场及紧缩场;近场法可分为平面、球面、柱面近场测试法。
近场方法
近场测量技术就是在天线的近场区的某一表面上采用一个特性已知的探头来取样场的幅度和相位特性,通过严格的数学变换而求得天线的远场辐射特性的技术。根据取样表面的形状,近场测试场分为3种,即平面测试场、柱面测试场和球面测试场。
近场测量技术的主要优点是:所需要的场地小,可以在微波暗室内进行高精度的测量,免去了建造大型微波暗室的困难。测量受周围环境的影响小,保证全天候都能顺利进行。测量的信息量大,通过在近场区的某一表面的取样可以准确地得出天线任意方向的远场幅度相位和极化特性。近场测量技术将在第7章详细论述。
天线的增益
“增益”指天线较强辐射方向的天线辐射方向图强度与参考天线的强度之比取对数。如果参考天线是全向天线,增益的单位为dBi。比如,偶极子天线的增益为2.14dBi 。偶极子天线也常用作参考天线,这种情况下天线的增益以dBd为单位。
天线增益是无源现象,天线并不增加激励,而是仅仅重新分配而使在某方向上比全向天线辐射更多的能量。如果天线在一些方向上增益为正,由于天线的能量守恒,它在其他方向上的增益则为负。因此,天线所能达到的增益要在天线的覆盖范围和它的增益之间达到平衡。比如,航天器上碟形天线的增益很大,但覆盖范围却很窄,所以它必须准确地指向地球;而广播发射天线由于需要向各个方向辐射,它的增益就很小。
天线基本概念
连接天线和发射机输出端(或接收机输入端)的电缆称为传输线或馈线。传输线的主要任务是有效地传输信号能量,因此,它应能将发射机发出的信号功率以较小的损耗传送到发射天线的输入端,或将天线接收到的信号以较小的损耗传送到接收机输入端,同时它本身不应拾取或产生杂散干扰信号,这样,就要求传输线必须屏蔽。
顺便指出,当传输线的物理长度等于或大于所传送信号的波长时,传输线又叫做长线。